湘教版七年级下册数学3.2提公因式法(第1课时)提单项式公因式课件+练习
要点感知1 几个多项式的__________的因式称为它们的公因式.公因式的确定:(1)系数:各项系数的绝对值的__________;(2)字母及指数:各项都含有的相同字母的__________次幂.
预 习练习1-1 多项式18xy+12x2y-6xyz各项的公因式是( )
A.12yz B.6xz C.6xy D.3x
要点感知2 提公因式时,如果多项式的首项的符号为负,常提取一个带“-”号的公因式.
预习练习2-1 多项式-6a2 b2-3a2b3+12a3b各项的公因式是 ( )
A.a2b B.3ab C.-3a2b D.-3a 2b2
要点感知3 如果一个多项式的各项有__________,可以把这个__________提到括号外面,这种把多项式因式分解的方法叫做提公因式法.
预习练习3-1 (2014·湘潭)分解因式:ax-a=__________.
知识点1 公因式
1.把多项式3a2b2-6ab2+15a2b因式分解,应提取的公因式是( )
A.3a2b B.3ab C.15a2b2c D.ab2
2.多项式9x 3y2+12x2y2-6xy3中各项的公因式是__________.
知识点2 提单项式公因式因式分解
3.(2012·邵阳)把2a2-4a因式分解的最终结果是( )
A.2a(a-2) B.2(a2-2a) C.a(2a-4) D.(a-2)(a+2)
4.用提公因式法因式分解正确的是( )
A.12abc-9a2b2c2=3abc(4-3ab) B.3x2y-3xy+6y=3y(x2-x+2y)
C.-a2+ab-ac=-a(a-b+c) D.x2y+5xy-y=y(x2+5x)
5.(2014·绍兴)因式分解:a2-a=__________.
6.因式分解:
(1)3ay-3by; (2)6a2b2-15a2b3+3a2b.
7.下列各组代数式中没有公因式的是( )
A.4a2bc与6abc2 B.ab与a2b3 C.a与b D.2x与4x
8.多项式-2an-1-4an+1的公因式是M,则M等于( )
A.2an+1 B.-2an C.-2an-1 D.-2an+1
9.将a3b3-a2b3-ab因式分解得( )
A.ab(a2b2-ab2-1) B.ab(a2b2-ab2) C.a(a2b3-ab3-b) D.b(a3b2-a2b2-a)
10.因式分解:
(1)(2013·桂林)3ab2-a2b=__________;
(2)(2013·无锡)2x2-4x=__________.
11.利用因式分解计算:2100-2101.
12.(1)已知:a+b=3,ab=2,求a2b+ab2的值;
(2)已知:3 a2+2a-3=0,求4-9a2-6 a的值.
挑战自我
13.用简便方法计算:123×6.28+628×1.32-15.5×62.8.
参考答案
课前预习
要点感知1 公共 最大公因数 最低
预习练习1-1 C
预习练习2-1 C
要点感知3 公因式 公因式
预习练习3-1 a(x-1)
当 堂训练
1.B 2.3xy2 3.A 4.C 5.a(a-1)
6.(1)原式=3y(a-b).
(2)原式=3a2b(2b-5b2+1).
课后作业
7.C 8.C 9.A
10.(1)ab(3b-a) (2)2x(x-2)
11.原式=2100×(1-2)=2100×(-1)=-2100.
12.(1)原式=ab(a+b)=2×3=6.
(2)因为3a2+2a-3=0,
所以3a2+2a=3.
所以原式=4-3(3a2+2a)=4-3×3=-5.
13.原式=12.3×62.8+62.8×13.2-15.5×62.8=62.8×(12.3+13.2-15.5)=62.8×10=628.