首页 | 试卷 | 课件 | 教案 | 素材 | 备课 | 中考 | 高考 | 教师频道 | 会员区 | 手机版



您的位置:数学课件 >>新课标人教版 >>高中(选修1-1) >>第一章常用逻辑用语 >>

1.4.1《全称量词》1.4.2《存在量词》课件
上传者:   加入日期:16-07-10
2015-2016学年人教版高中数学选修1-1 1.4.1《全称量词》1.4.2《存在量词》课件
通过哥德巴赫猜想的知识链接和运动会排练的情景引入新课,激发学生学习新知的欲望,本课系统地学习了全称量词与存在量词、全称命题与特称命题.以学生自主探究为主,学习全称量词与存在量词、全称命题与特称命题.探究怎样判断全称命题与特称命题的真假.例1探讨全称命题的真假判断问题.通过例2探讨使用不同的表达方法写出特称命题,例3是辨别全称命题与特称命题。
    对于一些像“至少有一个”“至多有2个”之类的存在量词,在讲解的过程中老师因注意其意义的理解。还有些命题把这些量词省略了,讲解过程中也应注意。
  德国著名的数学家哥德巴赫提出这样一个问题:“任意取一个奇数,可以把它写成三个质数之和,比如77,77=53+17+7”,同年欧拉首先肯定了哥德巴赫猜想的正确,并且认为:每一个偶数都是两个质数之和,虽然通过大量检验这个命题是正确的,但是不需要证明.这就是被誉为“数学皇冠上的明珠”的哥德巴赫猜想.200多年后我国著名数学家陈景润才证明了“1+2”即:凡是比某一个正整数大的任何偶数,都能表示成一个质数加上两个质数相乘,或者表示成一个质数加上一个质数.从陈景润的“1+2”到“1+1”似乎仅一步之遥,但它是一个迄今为止仍然没有得到正面证明也没有被推翻的命题.要想正面证明就需要证明“任意一个”“每一个”“都”这种命题成立,要想推翻它只需“存在一个”反例.

资料名称: 1.4.1《全称量词》1.4.2《存在量词》课件
文件大小: 1810K
文件格式: ppt
版本年级: 1.4全称量词与存在量词
下载地址:
进入高速下载页 进入本站下载页
本站说明: 下载说明  阅读说明
 相关资料

 人教A版高中数学选修2-1《1.4.3含有一个量词的命题的否定》课件 19-04-08(课件)

 人教A版高中数学选修2-1《1.4.1全称量词-1.4.2存在量词》课件 19-04-08(课件)

 2017-2018学年人教A版选修1-1《1.4全称量词与存在量词》练习含解析 17-10-23(试卷)

 选修1-1《1.4全称量词与存在量词》课时提升作业含答案解析 17-06-25(试卷)

 选修2-1《1.4全称量词与存在量词》课件(共15张PPT) 16-07-12(课件)

 人教版数学选修1-1《1.4.3含有一个量词的命题的否定》课件 16-07-10(课件)

 《1.4.3含有一个量词的命题的否定》课时提升作业 14-11-04(试卷)

 《1.4.3含有一个量词的命题的否定》课堂达标•效果检测试卷 14-11-04(试卷)

 《1.4.1全称量词与1.4.2存在量词》课堂达标•效果检测试卷 14-11-04(试卷)

 《1.4.1全称量词与1.4.2存在量词》课时提升作业 14-11-04(试卷)


 

 交互区
上传资料 资料求助
 学科分类
小学语文 小学数学 小学英语
小学科学 初中语文 初中数学
初中英语 初中科学 初中物理
初中化学 初中生物 道德法治
初中历史 初中地理 高中语文
高中数学 高中英语 高中物理
高中化学 高中生物 高中政治

[微信公众号]   版权所有@12999教育资源网