11.3 证明(1)
一.设计思路
本节课通过阅读欧几里得的《几何原本》,通过向学生的介绍,让学生了解数学文化的博大与精深,从而使学生热爱数学、喜爱数学.让他们感受《原本》的丰富文化内涵,激发学生学习数学,热爱数学悠久文化的思想感情,培养学习数学自豪感和探究创新的精神.对于用推理的方法证实“同角的补角相等”“对顶角相等”这两个问题时,采取了分段提问的方法逐步加深对命题的剖析与理解,在此基础上,让学生知道证明与图形有关的命题时的一般步骤,从而发展学生由合情推理到演绎推理的思维过程,不断发展学生的演绎推理能力.
二.目标设计
1. 了解证明的基本步骤和书写格式;
2. 能从“同位角相等,两直线平行”“两直线平行,同位角相等”这两个基本事实出发,证明平行线的判定定理和平行线的性质定理,并能简单应用这些结论;
3. 感受数学的严谨性,结论的确定性,初步养成言之有理,落笔有据的推理习惯,发展初步的演绎推理能力;
4. 感受欧几里得的演绎体系对数学发展和人类文明的价值.
三.活动设计