首页 | 试卷 | 课件 | 教案 | 素材 | 备课 | 中考 | 高考 | 教师频道 | 会员区 | 手机版



您的位置:数学教案 >>北师大版 >>八年级下 >>第六章平行四边形 >>1.平行四边形的性质 >>

6.1平行四边形的性质(一)教学设计
上传者:   加入日期:15-06-09
第六章  平行四边形
. 平行四边形的性质(一)
西安市高新一中初中校区  邹国胜
 
一、学生起点分析
学生知识技能基础:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。
学生活动经验基础:在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。
二、学习任务分析
四边形和三角形一样,也是基本的平面图形,在七年级下册有关知识的基础上,探索并掌握四边形的基本性质,进一步学习说理和简单的推理,将为学生学习空间与图形的后继内容打下基础,本节将用多种手段(直观操作、图形的平移、旋转、说理及简单推理等)探索平行四边形的性质并培养学生的探索意识。
教学目标:
1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;
2.探索并掌握平行四边形的性质,并能简单应用;
3.在探索活动过程中发展学生的探究意识。
教学重点:平行四边形性质的探索。
教学难点:平行四边形性质的理解。
教学方法:探索归纳法
三、教学过程设计
本节课分5个环节:
第一环节:实践探索,直观感知
第二环节:探索归纳,交流合作
第三环节:推理论证,感悟升华
第四环节:应用巩固,深化提高
第五环节:评价反思,概括总结
第一环节:实践探索,直观感知
1小组活动一
内容
问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;
(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
目的
通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形;
平行四边形的相邻的两个顶点连成的一段叫做它的对角线。
    教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD // BC 且AB // BC;平行四边形的表示 “      ”。
2小组活动二
内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?
目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。
效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。
 
第二环节   探索归纳、合作交流
小组活动三:
内容:平行四边形是中心对称图形吗?如果是,你能找出他的对称中心并验证你的结论吗?   你还发现平行四边形的那些性质呢?
活动目的:
这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形中心对称性的特征,明确了两条对角线的交点就是其对称中心,感知平行四边形的对边,对角的性质:平行四边形的对边相等,平行四边形的对角相等等。
活动注意事项:
引导学生动手操作、复制、旋转、观察、分析,在剪切平行四边形纸片时,要保证上下纸片的大小、形状完全相同。
第三环节   推理论证、感悟升华
1实践探索内容
(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边形的对应边、对应角分别相等。
(2)可以通过推理来证明这个结论。
例:如图6-2(1),四边形ABCD是平行四边形.
    求证:AB=CD,BC=DA.
证明:如图6-2(2),连接AC.
∵ 四边形ABCD是平行四边形
∴AD // BC, AB // CD
∴ ∠1=∠2,∠3=∠4
∴ △ABC和△CDA中
   ∠2=∠1
    AC=CA
   ∠3=∠4
∴ △ABC≌△CDA(ASA)
∴ AB=DC, AD=CB
学生证明:平行四边形的对角相等.
2活动目的:
学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。
3活动效果:
“实践→认识→再实践→认识”是数学学习的重要方法,说理论证平行四边形的性质时学生能很好地接受,由此看出这一年龄段的学习完全可以由感性的认知上升到理性的证明。
 
第四环节  应用巩固  深化提高
1. 活动内容:
 (1)练一练: 已知:如图6-3,在 ABCD中, EF是对角线AC上的两点,且AE=CF
           求证:BE=DF
证明:∵四边形ABCD是平行四边形
∴  AB = CD
    AB // CD
  ∴  ∠BAE=∠DCF
又∵  AE=CF
  ∴  △BAE≌△DCF
  ∴  BE=DF
 
⑵ 议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?
A(学生思考、议论)
B总结归纳:可以确定其它三个内角的度数。
由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。
2活动目的:
通过练一练,议一议,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。
3活动效果:
    学生经过通过此环节的思、议、练进一步理解和应用掌握了平行四边形的性质特征,是对探索归纳:比较的综合提高。
 
第五环节    评价反思  概括总结
1活动内容
    [1]师生相互交流、反思、总结。
(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。
(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?
(3)本节学习到了什么?(知识上、方法上)
2活动目的:
鼓励学生交流课堂实践、观察探索的经历、感受和收获;鼓励学生勇于进行自我评价,进一步培养学生反思意识及总结能力。
3活动效果:
学生踊跃谈感受和收获,本节学习了平行四边形的概念,探索了平行四边形的性质:平行四边形对边相等,平行四边形对角相等;平行四边形对角线互相平分。
[2]考一考:
1.   ABCD中,∠B=60°,则∠A=    ∠C=   ∠D=    
2.   ABCD中,∠A比∠B大20°,则∠C=    
3.  ABCD中,AB=3,BC=5,则AD=        CD=    
4.   ABCD中,周长为40cm,△ABC周长为25,则对角线AC=(   )cm。
A.5cm    B.15cm     C.6cm    D.16cm
参考答案
1.120°   120°  60°
2.100°
3.5cm    3cm
4.A
[3]布置作业
(1)课本习题6.1    1,2,3,4.
(2)想一想(请同学们思考探究)
如图    ABCD中,平行于对角线BD的直线MN分别交CD,CB的延长线于M,N,交AD于P,交AB于Q,你能说明MQ=NP吗?说说你的理由。
[4]师生共勉,把一件平凡的事做好,就是又平凡,把一件简单事情做好就是不简单。
4活动目的:
1.通过作业的巩固对平行四边形性质理解并学会应用。
2.想一想,旨在的同学们探究意识延伸。
 
四、教学反思
1.本节教材直观感知活动较多,由学生的心理及年龄特点决定,学生有一定的逻辑思考能力及说理能力,因此从理性角度分析平行四边形的性质特点是非常需要的。
2.学生在“议一议,练一练”环节中,要引导有条理的叙述及数学语言的表达。

资料名称: 6.1平行四边形的性质(一)教学设计
文件大小: 126K
文件格式: doc
版本年级: 1.平行四边形的性质
下载地址:
进入高速下载页 进入本站下载页
本站说明: 下载说明  阅读说明
 相关资料

 北师大八年级下《6.2平行四边形的性质》课时练习含答案解析 17-04-06(试卷)

 北师大八年级下6.1《平行四边形的性质》习题含答案解析 17-01-19(试卷)

 6.1.1平行四边形的性质(1)课件(共15张PPT) 16-04-21(课件)

 6.1《平行四边形的性质》导学案2(2份) 15-06-26(教案)

 6.1平行四边形的性质课件(2份打包) 15-06-17(课件)

 6.1平行四边形的性质(二)教学设计 15-06-09(教案)

 2015北师大八年级数学下《6.1平行四边形的性质》同步练习 15-04-22(试卷)

 6.1《平行四边形的性质》【学案+参考教案+同步课件】 15-03-23(课件)

 2015年北师大版八年级数学下6.1平行四边形同步练习含答案 15-03-21(试卷)

 6.1平行四边形的性质ppt课件(3份) 15-02-21(课件)


 

 交互区
上传资料 资料求助
 学科分类
小学语文 小学数学 小学英语
小学科学 初中语文 初中数学
初中英语 初中科学 初中物理
初中化学 初中生物 道德法治
初中历史 初中地理 高中语文
高中数学 高中英语 高中物理
高中化学 高中生物 高中政治

[微信公众号]   版权所有@12999教育资源网