北师大版八年级数学下《第4章因式分解》单元测试含答案解析
13.先阅读下面的材料,再因式分解:
要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.
请用上面材料中提供的方法因式分解:
(1)ab﹣ac+bc﹣b2:
(2)m2﹣mn+mx﹣nx;
(3)xy2﹣2xy+2y﹣4.
【考点】因式分解﹣分组分解法.
【专题】阅读型.
【分析】(1)首先将前两项与后两项分组,进而提取公因式,分解因式即可;
(2)首先将前两项与后两项分组,进而提取公因式,分解因式即可;
(3)首先将前两项与后两项分组,进而提取公因式,分解因式即可.
【解答】解:(1)ab﹣ac+bc﹣b2=a(b﹣c)+b(c﹣b)=(a﹣b)(b﹣c);
(2)m2﹣mn+mx﹣nx=m(m﹣n)+x(m﹣n)=(m﹣n)(m﹣x);
(3)xy2﹣2xy+2y﹣4
=xy(y﹣2)+2(y﹣2)
=(y﹣2)(xy+2).
【点评】此题主要考查了分组分解法分解因式,正确分组进而提取公因式是解题关键.