沪科版八年级数学上第14章全等三角形单元测试(2)含答案解析 13.如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F. (1)判断四边形ACGD的形状,并说明理由. (2)求证:BE=CD,BE⊥CD. 【考点】全等三角形的判定与性质;等腰直角三角形;平行四边形的判定. 【专题】证明题. 【分析】(1)利用等腰直角三角形的性质易得BD=2BC,因为G为BD的中点,可得BG=BC,由∠CGB=45°,∠ADB=45得AD∥CG,由∠CBD+∠ACB=180°,得AC∥BD,得出四边形ACGD为平行四边形; (2)利用全等三角形的判定证得△DAC≌△BAE,由全等三角形的性质得BE=CD;首先证得四边形ABCE为平行四边形,再利用全等三角形的判定定理得△BCE≌△CAD,易得∠CBE=∠ACD,由∠ACB=90°,易得∠CFB=90°,得出结论.
|