2017年春新人教版九年级下《26.1.1反比例函数》导学案
1.理解并掌握反比例函数的概念.
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式.
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.
自学指导:阅读课本P2-3,完 成下列问题.
知识探究
1.小学里我们知道:如果两个变量x、y满足xy=k(k为常数,k≠0),那么x、y就成为反比例关系.例如,速度v、时间t与路程s之间满足vt=s,如果路程s一定,那么速度v与时间t就成反比例关系.
2.一般地,在某一变化过程有两个变量x和y,如果对于变量x的每一个值,变量y都有唯一的值与它对应,我们就称y是x的函数.其中,x是自变量,y是因变量.
3.下列问题中,变量间的对应关系可用怎样的函数式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1 463 km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变 化而变化.