含答案解析
二、填空题
4.【解析】首先根据根与系数的关系求出x1+x2=5,x1x2=﹣1,然后把x12+x22转化为x12+x22=(x1+x2)2﹣2x1x2,最后整体代值计算.
解:∵x1、x2是一元二次方程x2﹣5x﹣1=0的两实数根,
∴x1+x2=5,x1x2=﹣1,
∴x12+x22=(x1+x2)2﹣2x1x2=25+2=27,
故答案为:27.
点评:本题主要考查了根与系数的关系的知识,解答本题的关键是掌握一元二次方程两根之和与两根之积与系数的关系,此题难度不大.
5. 【解析】将x=1代入到x2+ax+b=0中求得a+b的值,然后求代数式的值即可.
解:∵x=1是一元二次方程x2+ax+b=0的一个根,
∴12+a+b=0,
∴a+b=﹣1,
∴a2+b2+2ab=(a+b)2=(﹣1)2=1.
故答案为:1.
点评:此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式的值.
6.【解析】由于m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,可知m,n是x2﹣x﹣3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=2,mn=﹣3,又n2=n+3,利用它们可以化简2n2﹣mn+2m+2015=2(n+3)﹣mn+2m+2015=2n+6﹣mn+2m+2015=2(m+n)﹣mn+2021,然后就可以求出所求的代数式的值.
解:由题意可知:m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,
所以m,n是x2﹣x﹣3=0的两个不相等的实数根,
则根据根与系数的关系可知:m+n=1,mn=﹣3,
又n2=n+3,
则2n2﹣mn+2m+2015
=2(n+3)﹣mn+2m+2015
=2n+6﹣mn+2m+2015
=2(m+n)﹣mn+2021
=2×1﹣(﹣3)+2021
=2+3+2021
=2026.
故答案为:2026.
点评:本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值.