【挑战中考数学压轴】(精选)(2016版):第三部分 图形运动中的计算说理问题
例3 2013年南京市中考第26题
已知二次函数y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).
(1)求证:不论a与m为何值,该函数的图像与x轴总有两个公共点;
(2)设该函数的图像的顶点为C,与x轴相交于A、B两点,与y轴交于点D.
①当△ABC的面积等于1时,求a的值
②当△ABC的面积与△ABD的面积相等时,求m的值.
动感体验
请打开几何画板文件名“13南京26”,拖动y轴上表示实数a的点可以改变a的值,拖动点A可以改变m的值.分别点击按钮“m1”、“m2”、“m3”,再改变实数a,可以体验到,这3种情况下,点C、D到x轴的距离相等.
请打开超级画板文件名“13南京26”, 拖动点A可以改变m的值,竖直拖动点C可以改变a的值.分别点击按钮,可得到△ABC的面积与△ABD的面积相等的三种情形。
思路点拨
1.第(1)题判断抛物线与x轴有两个交点,容易想到用判别式.事实上,抛物线与x轴的交点A、B的坐标分别为 (m,0)、 (m+1,0),AB=1.
2.当△ABC的面积等于1时,点C到x轴的距离为2.
3.当△ABC的面积与△ABD的面积相等时,C、D到x轴的距离相等.
4.本题大量的工作是代入计算,运算比较繁琐,一定要仔细.
满分解答
(1)由y=a(x-m)2-a(x-m)=a(x-m)( x-m-1),
得抛物线与x轴的交点坐标为A(m,0)、B(m+1,0).
因此不论a与m为何值,该函数的图像与x轴总有两个公共点.