华师大版七年级下册(新)《10.3.1图形的旋转》教学设计
1. 图形的旋转
教学目标
【知识与技能】
通过具体实例认识旋转,了解旋转的定义,能说出旋转中心、旋转角.
【过程与方法】
经历探索图形的旋转过程,发展几何直觉,领悟变换的数学思想方法.
【情感态度】
经历对生活中旋转图形的观察、讨论、实践操作,感知数学美,提高对数学学习的兴趣.
【教学重点】
旋转的有关概念.
【教学难点】
会找出旋转前后图形中的对应点、对应线段、对应角、旋转中心、旋转角.
教学过程
一、 情境导入,初步认识
学生观察教材第118页图10.3.1,并回答下面的问题:
(1)图中,哪些零部件作转动?
(2)在这些转动中有哪些共同特征?
(3)钟上的秒针在不停的转动中,其形状、大小、位置是否发生改变?大风车在转动中其形状、大小、位置是否发生改变?彩票大转盘在转动的过程中其形状、大小、位置是否发生变化?
这就是今天我们所研究的课题“图形的旋转”.
【教学说明】 通过复习,为本节课的教学作准备.
二、思考探究,获取新知
1.观察教材第118页图10.3.2,我们可以把它们看成是由一个或几个平面图形,在它所在的平面上转动而产生奇妙画面.
2.演示单摆上小球的运动
(1)单摆上小球的转动由位置P转到P′,它是绕着哪一点?沿着什么方向?转动了多少角度?
(2)单摆上小球转到P与P′中间时,它绕着的点、沿着的方向有没有变化?转动的角度有没有变化?
【归纳结论】 像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
3.做一做:大家把准备好的透明纸拿出来.按老师要求完成以下内容:
(1)任意画一个△ABC.
(2)把透明纸覆盖在△ABC上,并在透明纸上画出一个与△ABC重合的三角形.
(3)用一枚图钉将点A处固定.
(4)将透明纸绕着图钉(即点A)转动45°,透明纸上的三角形就旋转了新的位置,标上A′、B′、C′.
我们可以认为△ABC绕着A点旋转45°后到△AB′C′.
同学们考虑一下,可以互相交流,在这样的旋转中,你发现了什么?
同学们在交流中形成共识后,教师可以让学生回答如下问题:
(1)B点旋转到哪一点?(点B′)
(2)C点旋转到哪一点?(点C′)
(3)∠BAC旋转到哪里?(∠B′AC′)
(4)线段AB旋转到哪里?(线段AB′)
(5)线段AC旋转到哪里?(线段AC′)
(6)线段BC旋转到哪里?(线段B′C′)
(7)∠B旋转到哪里?(∠B′)
(8)∠C旋转到哪里?(∠C′)
(9)它的旋转中心是什么?(点A)
(10)它的旋转的角度是多少?(45°)
这里要给学生指出:在旋转的过程中,(1)点B与点B′,点C和点C′是对应点;(2)线段AB与线段AB′,线段AC与线段AC′,线段BC与线段B′C′是对应线段;(3)∠BAC和∠B′AC′,∠B与B′,∠C与∠C′是对应角.
想一想:△ABC的边AB的中点D的对应点在哪里?
根据旋转的原理:图形上每一个点都绕着旋转中心,按同一方向,旋转同一角度而得到的,所以AB的中点D的对应点也应在它的对应线段AB′的中点位置.
做一做:如果△ABC的外面一点O作为旋转中心,把△ABC绕着点O按逆时针方向旋转60°,将△ABC旋转到△A′B′C′位置,你会做吗?在学生动手操作下,不会的同学也可以互相交流.