新湘教版九年级下册1.3不共线三点确定二次函数的表达式教案+课件+练习
【知识与技能】
1.掌握用待定系数法列方程组求二次函数解析式.
2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便.
【过程与方法】
通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.
【情感态度】
通过本节教学,激发学生探究问题,解决问题的能力.
【教学重点】
用待定系数法求二次函数的解析式.
【教学难点】
灵活选择合适的表达式设法.
一、情境导入,初步认识
1.同学们想一想,已知一次函数图象上两个点的坐标,如何用待定系数法求它的解析式?
2.已知二次函数图象上有两个点的坐标,能求出其解析式吗?三个点的坐标呢?
二、思考探究,获取新知
探究1 已知三点求二次函数解析式讲解:教材P21例1,例2.
探究2 用顶点式求二次函数解析式.
例3 已知二次函数的顶点为A(1,-4)且过B(3,0),求二次函数解析式.
【分析】已知抛物线的顶点,设二次函数的解析式为y=a(x-h)2+k.
解:∵抛物线顶点为A(1,-4),∴设抛物线解析式为y=a(x-1)2-4,∵点B(3,0)在图象上,∴0=4a-4,∴a=1,∴y=(x-1)2-4,即y=x2-2x-3.
探究3 用交点式求二次函数解析式
例4 已知一抛物线与x轴交于点A(-2,0),B(1,0),且经过点C(2,8).求二次函数解析式.
【分析】由于抛物线与x轴的两个交点为A(-2,0),B(1,0),可设解析式为交点式:y=a(x-x1)(x-x2).
解:A(-2,0),B(1,0)在x轴上,设二次函数解析式为y=a(x+2)(x-1).又∵图象过点C(2,8),∴8=a(2+2)(2-1),∴a=2,∴y=2(x+2)(x-1)=2x2+2x-4.