7.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为【 】(精确到0.1米,sin42°≈0.67,tan42°≈0.90)
8.已知平面直角坐标系中两点A(-2,3),B(-3,1),连接AB,平移线段AB得到线段A
1B
1,若点A的对应点A
1的坐标为(3,4),则点B
1的坐标为
.
11.如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是____________(填序号)①AB=BF②AE=ED③AD=DC④∠ABE=∠DFE .
12.如图是一个包装盒的三视图,则这个包装盒的体积是 .
13.如图,在△ABC中AB=AC,AD是BC边上的高,点E,F,G是AD上的四个点,若△ABC的面积为24cm
2,则阴影部分的面积为______cm
2.
21.(9分)如图,五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°.连接AD.
(1)同学们学习了图形的变换后知道旋转是研究几何问题的常用方法,请你在图中作出△ABC绕着点A按逆时针旋转“∠BAE的度数”后的像;
(2)试判断AD是否平分∠CDE,并说明理由.
22.(9分)某乡镇中学教学楼对面是一座小山,去年“联通”公司在山顶上建了座通讯铁塔.甲、乙两位同学想测出铁塔的高度,他们用测角器作了如下操作:甲在教学楼顶A处测得塔尖M的仰角为α,塔座N的仰角为β;乙在一楼B处只能望到塔尖M,测得仰角为θ(望不到底座),他们知道楼高AB=20m,通过查表得:tanα=0.5723,tanβ=0.2191,tanθ=0.7489;请你根据这几个数据,结合图形推算出铁塔高度MN的值.
23.(9分)如图,在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,∠ADB=∠CAD+∠ABD,∠BAD=3∠CBD.
(1)求证:△ABC为等腰三角形;
(2)M是线段BD上一点,BM:AB=3:4,点F在BA的延长线上,连接FM,∠BFM的平分线FN交BD于点N,交AD于点G,点H为BF中点,连接MH,当GN=GD时,探究线段CD、FM、MH之间的数量关系,并证明你的结论.
24.(9分)如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.
(1)求证:△MDC是等边三角形;
(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC即MC′)同时与AD交于一点F时,点E,F和点A构成⊿AEF,试探究⊿AEF的周长是否存在最小值。如果不存在,请说明理由;如果存在,请计算出⊿AEF周长的最小值.
25.(13分)如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ,点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB=______,PD=______;
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图②,在整个运动过程中,求出线段PQ中点M所经过的路径长.