4. 菱形、矩形、正方形都具有的性质是( )
A. 对角线相等且互相平分 B. 对角线相等且互相垂直平分
C. 对角线互相平分 D. 四条边相等,四个角相等
11. 如图,为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离树底B端8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,则树AB的高度约为( )
A. 4.2米 B. 4.8米 C. 6.4米 D. 16.8米
18. 如图,△ABC、△DCE、△FEG为等边三角形,边长分别为2、3、5,且从左至右如图排列,连接BF,交DC、DE分别于M、N两点,则△DMN的面积为 . .
19. 如图,在扇形AOB中,OA=15,∠AOB=36°,OB在桌面内的直线
l上.现将此扇形沿
l按顺时针方向旋转(旋转过程无滑动),当OA落在
l上时,停止旋转.则点O所经过的路线长为
.(结果保留
π)
23. (本小题满分6分)
为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的三个红球及编号为4的白球一个,四个小球除了颜色和编号不同外,没有任何的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.甲先摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分;得分高的获得入场卷,如果得分相同,游戏重来.
(1)运用列表或画树状图求甲得1分的概率;
(2)这个游戏是否公平?请说明理由.
24. (本小题满分8分)
某市地铁工程正在加快建设,为了缓解市区内一些主要路段交通拥挤的现状,交警大队在一些主要路口设立了交通路况指示牌,如图所示,小明在离指示牌3.2米的点B处测得指示牌顶端D点和底端E点的仰角分别为52°和30°.求路况指示牌DE的高度.