一.选择题
1.(2013•莆田)如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )
|
A. |
55° |
B. |
70° |
C. |
125° |
D. |
145° |
2.(2014•遵义一模)用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是( )
|
A. |
平移和旋转 |
B. |
对称和旋转 |
C. |
对称和平移 |
D. |
旋转和平移 |
3.(2015•泰安模拟)如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为( )
|
A. |
(a﹣2,b) |
B. |
(a+2,b) |
C. |
(﹣a﹣2,﹣b) |
D. |
(a+2,﹣b) |
4.(2014•义乌市)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是( )
|
A. |
70° |
B. |
65° |
C. |
60° |
D. |
55° |
5.(2014•大田县质检)如图,在平面直角坐标系中,△ABC绕旋转中心顺时针旋转90°后得到△A´B´C´,则其旋转中心的坐标是( )
A. |
(1.5,1.5) |
B. |
(1,0) |
C. |
(1,﹣1) |
D. |
(1.5,﹣0.5) |
|
6.(2014•宝坻区二模)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:
①△AED≌△AEF;
②△ABE∽△ACD;
③BE+DC=DE;
④BE2+DC2=DE2.
其中一定正确的是( )
7.(2013•攀枝花)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=( )
|
A. |
30° |
B. |
35° |
C. |
40° |
D. |
50° |
8.(2013•南昌)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( )
|
A. |
60° |
B. |
75° |
C. |
85° |
D. |
90° |
9.(2012•十堰)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3 ;⑤S△AOC+S△AOB=6+ .其中正确的结论是( )
|
A. |
①②③⑤ |
B. |
①②③④ |
C. |
①②③④⑤ |
D. |
①②③ |
10.(2006•绵阳)如图,将△ABC绕顶点A顺时针旋转60°后,得到△AB′C′,且C′为BC的中点,则C′D:DB′=( )
|
A. |
1:2 |
B. |
1:2 |
C. |
1: |
D. |
1:3 |
二.填空题(共12小题)
11.(2014•巴中)如图,直线y= x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是 _________ .
12.(2010•黄浦区二模)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点C顺时针旋转至△A1B1C的位置,其中B1C⊥AB,B1C、A1B1交AB于M、N两点,则线段MN的长为 _________ .
13.(2014•赤峰样卷)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C旋转得到△EDC,使点D在AB边上,斜边DE交AC边于点F,则图中△CDF的面积为 _________ .
14.如图,已知Rt△ABC的周长为8,将△ABC的斜边放在定直线L上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2,则AA2= _________ .
15.(2014•长春模拟)如图是电脑CPU风扇的示意图.风扇共有9个叶片,每个叶片的面积约为8cm2.已知∠AOB=120°,在风扇的转动过程中,叶片落在扇形AOB内部的面积为 _________ .
16.(2014•中山模拟)如图,在△ABC中,AB=2,BC=3.5,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 _________ .
17.(2013•聊城)如图,在等边△ABC?,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为 _________ .
18.(2012•开平区二模)已知:如图,在平面直角坐标系xoy中,点B1、点C1的坐标分别为(1,0),(1, ),将△OB1C1绕原点O逆时针旋转60°,再将其各边都扩大为原来的m倍,使OB2=OC1,得到△OB2C2.将△OB2C2绕原点O逆时针旋转60°,再将其各边都扩大为原来的m倍,使OB3=OC2,得到△OB3C3,如此下去,得到△OB2011C2011,则点C2011的坐标: _________ .
19.(2011•南开区一模)如图,在Rt△ABC中,已知:∠C=90°,∠A=60°,AC=3cm,以斜边AB的中点P为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt△A′B′C′,则旋转前后两个直角三角形重叠部分的面积为 _________ cm2.
20.(2007•株洲)如图,将边长为 的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为 _________ 平方单位.
21.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,OPn(n为正整数),则点P6的坐标是 _________ ;△P5OP6的面积是 _________ .
22.如图,平面直角坐标系中,A(4,2)、B(3,0),将△ABO绕OA中点C逆时针旋转90°得到△A′B′O′,则A′的坐标为 _________ .
三.解答题(共4小题)
23.(2014•宿迁)如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.
24.(2014•岳阳)数学活动﹣求重叠部分的面积
(1)问题情境:如图①,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点P与等边△ABC的内心O重合,已知OA=2,则图中重叠部分△PAB的面积为 _________ .
(2)探究1:在(1)的条件下,将纸片绕P点旋转至如图②所示位置,纸片两边分别与AC,AB交于点E,F,图②中重叠部分的面积与图①重叠部分的面积是否相等?如果相等,请给予证明;如果不相等,请说明理由.
(3)探究2:如图③,若∠CAB=α(0°<α<90°),AD为∠CAB的角平分线,点P在射线AD上,且AP=2,以P为顶点的等腰三角形纸片(纸片足够大)与∠CAB的两边AC,AB分别交于点E、F,∠EPF=180°﹣α,求重叠部分的面积.(用α或 的三角函数值表示)
25.(2014•宜兴市模拟)如图,有一张直角三角形纸片ABC,∠ACB=90°,∠B=60°,BC=3,直角边AC在x轴上,B点在第二象限,A( ,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA方向平行移动,至B点到达A点停止(记平移后的四边形为B1C1F1E1).在平移过程中,设平移的距离BB1=x,四边形B1C1F1E1与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)平移过程中是否存在点F1落在y轴上,若存在,求出x的值;若不存在,说明理由;
(3)直接写出S与x的函数关系式及自变量x的取值范围.