而正是这个“复杂的性质”,向康托尔暗示了无穷之外另有洞天。
对于任意的点集P,我们可以构造另一个点集P\',它包含所有可以用P中的点无限逼近的点。用数学的术语来说,点集P中的某一点p在P\'中,当且仅当对于任意小的距离e,都存在P中不同于p但与p距离小于e的点。既然e可以要多小有多小,这也就是说可以用P中的其他点无穷逼近我们所考虑的点p。这样构造出来的点集P\',又叫P的导集。导集P\'本身也是点集,所以它同样有自己的导集,记作P\'\'。导集的导集也有自己的导集,如此反复,直至无穷。我们可以将P取n次导集操作后的结果记为P(n)。
容易知道,一个点集的导集必定是点集的一个子集。实际上,从不太严谨的观点来看,求导集这一操作可以看作一个将点集中那些“离散”的点,也就是那些与所有其他点“保持某个距离”的孤零零的点(或者叫孤立点),从点集中去掉的操作。在一次又一次求导集的操作中,由于我们不停地去掉孤立点,可能会有新的点因为我们除去了它的所有“邻居”而变为新的孤立点,所以多次求导集并非没有意义。
导集的定义并不直观,它的性质也相当复杂。对于一个只有有限个点的点集来说,它的导集必然是空集;而对于一个区间来说,它的导集就是它本身;由数列0.1, 0.01, 0.001, ...组成的点集,它的导集就是仅仅包含0一个点的集合,它的二次导集就是空集。给定一个正整数n,通过一点点思考,再加上一点点数学分析的知识,很容易构造这样的集合,在求它的逐次导集时,前n次得到的都不是空集,最后第n+1次得到的才是空集。有兴趣的读者可以自己尝试构造一下。
|