2014-2015学年人教A版必修三高中数学3.2.2(整数值)随机数(random numbers)的产生(学案+课件+课时达标训练+素材)8份
[情境导学]
在第一节中,为了得到某一随机事件发生的概率,我们做了大量重复试验,有的同学可能觉得这样做试验花费的时间太多了,那么,有没有其它方法可以代替试验呢?答案是肯定的,这就是我们将要学习的内容——(整数值)随机数的产生.
探究点一 随机数的产生
问题 通过大量重复试验,反复计算事件发生的频率,再由频率的稳定值估计概率,是十分费时的.对于实践中大量非古典概型的事件概率,又缺乏相关原理和公式求解.因此,我们设想通过计算机模拟试验解决这些矛盾.
思考1 我们要产生1~25之间的随机整数,可以把25个大小形状相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌,然后从中摸出一个,这个球上的数就称为随机数.这种产生随机数的方法我们称之为抽签法,除抽签法外,你还有其它办法吗(阅读教材130-131页)?
答 用计算器产生.具体操作方法见教材.
思考2 我们可以用0表示反面朝上,1表示正面朝上,利用计算器不断地产生0,1两个随机数,以代替抛硬币实验,说出用计算器产生0,1两个随机数的过程?
答 答案见教材.
思考3 我们也可以利用计算机产生随机数,而且可以直接统计出频数和频率,请阅读教材相关内容,然后说出用计算机中的Excel软件产生随机数表中的数是0~9之间的随机数的过程?
答 用Excel演示:
(1)选定A1格,键入“=RANDBETWEEN(0,9)”,按Enter键,则在此格中的数是随机产生的;
(2)选定A1格,点击复制,然后选定要产生随机数的格,比如A2至A100,点击粘贴,则在A2至A100的数均为随机产生的0~9之间的数,这样我们就很快就得到了100个0~9之间的随机数,相当于做了100次随机试验.
思考4 若抛掷一枚均匀的骰子30次,如果没有骰子,你有什么办法得到试验的结果?
答 由计算器或计算机产生30个1~6之间的随机数.
思考5 一般地,如果一个古典概型的基本事件总数为n,在没有试验条件的情况下,你有什么办法进行m次实验,并得到相应的试验结果?
答 将n个基本事件编号为1,2,…,n,由计算器或计算机产生m个1~n之间的随机数.
例1 天气预报说,在今后的三天中,每一天下雨的概率均为40%.这三天中恰有两天下雨的概率大概是多少?
|