2014版北师大版九年级数学上4.3相似多边形教案
教学过程
一、创设问题情境,导入新课 :
1.下面请同学 们观察下面两个多边形: 计算机显 示屏上的多边形ABCDEF和投射到银幕上的多边形A1B1C1D1E1F1,它们的形状相同吗? 学生回答后,教师: 这样的两个多边形叫做什么多边形?
2. 引入课题:相似多边形
二、归纳定义及运用
(学生根据观察和体验的过程,归纳定义,提高语言表达能力)
1.合作探究:
在图3-11中的两个多边形中,是否有对应相等的内角?设法验证你的猜测.
在图3-11中的两个多边形中,夹相等内角的两边是否成比例?
(同桌一人测角,一人测边,共同得出结论:这种形状相同的多边形各对应 角相等、各对应边成比例.然后尝试给相似多边形下一个定义.)
2. 获得新知:(自读课本,时间3分钟,然后回答老师提出的问题:①多边形相似需满足几个条件? ②相似多边形的记法有什么要求?③什么叫相似比?求相似比要注意什么?)
3.议一议:
(1)观察下面两组图形,图(1)中的两个图形相似吗?图(2)中的两个图形呢?为什么?你从中得到什么启发?与同桌交流.
(2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?
(通过对两个典型范例的分析,加深对相似多边形的本质特征的理解.让学生充分发表看法,然后老师总结。)
4.巩固新知:(巩固相似多边形的定义这一最基本的判断方法。)
例 下列每组图形是相似多边形吗?试说明理由。
(1)正三角形ABC与正三角形D EF;
(2)正方形ABCD与正方形EFGH.
5.想一想——反过来会怎样?
如果两个多边形相似,那么它们的 对应角有什么关系?对应边呢?
(老师总结:相似多边形的定义既是最基本、最重要的判定方法,也是最本质、最重要的性质.)
6.做一做
一块长3m、宽1.5m的矩形黑板如图所示,镶在其外围的木质边框宽7.5cm.边框的内外边缘所成的矩形相似吗?为什么?
(让学生独立作出判断,并说明理由.通过这个易出错的例子,使学生认识到直观有时是不可靠的,需要通过定义的两个条件进行判断.)
三、课堂小结
通过这节课的学习你有什么收获?
(学生自由回答,培养学生的语言表达力)
学生归纳总结:相似多边形的概念既是性质又是判定,运用性质时对应顶点字母写在对应的位置上,同时知道相等角所对边是对应边,对应边所对角是对应角。相似比有顺序 要求
四、能力评估
1.下面两个矩形相似,则它们对应边的比是_____
2如图,两个正八边形的边长分别为a和b,它们相似吗?为什么?
3.如图,矩形草坪长20m,宽10m,沿草坪四周外围有1m宽的环形小路.小路内外边缘的矩形相似吗?
|