2014年北师大版八年级下1.1.3等腰三角形教案
教学目标:
1.能够用综合法证明等腰三角形的判定定理,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性.
2.初步了解反证法的含义,并能利用反证法证明简单的命题.
3.体验数学活动中的探索与创造,感受数学的严谨性.
教学重点与难点:
重点:等腰三角形的判定定理的证明.
难点:反证法的含义,利用反证法证明简单的命题.
教法与学法指导:
本节应用“启迪诱导—自主探究”教学模式.教师在教学过程中起到引导释疑的作用:引导学生观察、思考、分析、讨论、形成结论,并让学生在应用中体会所得知识,学会应用所学知识解决问题的方法.本节课关注了问题的变式与拓广,引领学生经历了提出问题、解决问题的过程,因而较好地提高了学生的研究能力、自主学习能力.
课前准备:多媒体课件
教学过程:
第一环节 回顾旧知 复习导入
师:请同学们回顾一下,前面我们学习了等腰三角形的哪些性质。
生1:等腰三角形两底角相等,就是“等边对等角”。
生2:“三线合一”。
生3:等腰三角形两腰上的高相等,两腰上的中线相等,两底角的平分线相等。
师:非常好!同学们概括的很全面。那么对于等腰三角形的性质定理:等腰三角形两底角相等,这个命题的题设和结论是什么?
生:题设:等腰三角形。结论:两底角相等。
师:我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等?
生:完全成立,可以证明出来。
设计意图:设计成问题串是为引出等腰三角形的判定定理埋下伏笔。学生独立思考是对上节课内容有效地检测手段。
第二环节 合作探究 展示交流
师:以前我们通过改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.比如“等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?下面我们来一起证明一下这个结论。请同学们画出图形,写出已知、求证。
学生活动:在练习本上画图,写出已知、求证,完成证明命题的前两步。找一个同学黑板板书。
|