2017-2018学年吉林省松原市扶余高二(上)期末数学试卷(文科)含答案解析 12.(5分)类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是( ) ①各棱长相等,同一顶点上的任两条棱的夹角都相等; ②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等. A.①③ B.②③ C.①② D.①②③ 【解答】解:在由平面几何的性质类比推理空间立体几何性质时,我们常用的思路是: 由平面几何中点的性质,类比推理空间几何中线的性质; 由平面几何中线的性质,类比推理空间几何中面的性质; 由平面几何中面的性质,类比推理空间几何中体的性质; 或是将一个二维平面关系,类比推理为一个三维的立体关系, 故类比平面内正三角形的“三边相等,三内角相等”的性质,推断: ①各棱长相等,同一顶点上的任两条棱的夹角都相等; ②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等. 都是恰当的 故选D.
|