2018年人教版七年级数学下《压轴题培优》期末复习专题含答案 7.课题学习:平行线的“等角转化”功能.阅读理解: 如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数. (1)阅读并补充下面推理过程. 解:过点A作ED∥BC,所以∠B= ,∠C= . 又因为∠EAB+∠BAC+∠DAC=180°. 所以∠B+∠BAC+∠C=180°. 解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决. 方法运用: (2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数. 深化拓展: (3)已知AB∥CD,点C在点D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间. 请从下面的A,B两题中任选一题解答,我选择 题. A.如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为 °. B.如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED度数为 °.(用含n的代数式表示)
|