2018年华师大版中考总复习知识点梳理:第16讲等腰、等边及直角三角形 1.等腰三角形(1)性质 ①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C; ②三线合一:顶角的平分线、底边上的中线和底边上的高 互相重合; ③对称性:等腰三角形是轴对称图形,直线AD是对称轴. (2)判定 ①定义:有两边相等的三角形是等腰三角形; ②等角对等边:即若∠B=∠C,则△ABC是等腰三角形. (1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形. 失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°. 2.等边三角形(1)性质 ①边角关系:三边相等,三角都相等且都等于60°. 即AB=BC=AC,∠BAC=∠B=∠C=60°; ②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴. (2)判定 ①定义:三边都相等的三角形是等边三角形; ②三个角都相等(均为60°)的三角形是等边三角形; ③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质. (2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB. 例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.
|