2018年高考数学(理)二轮专题复习突破精练6:
导数与函数的单调性、极值、最值含解析
4.(2017山东,理20)已知函数f(x)=x2+2cos x,g(x)=ex(cos x-sin x+2x-2),其中e≈2.718 28…是自然对数的底数.
(1)求曲线y=f(x)在点(π,f(π))处的切线方程.
(2)令h(x)=g(x)-af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.
解 (1)由题意f(π)=π2-2,
又f'(x)=2x-2sin x,所以f'(π)=2π,
因此曲线y=f(x)在点(π,f(π))处的切线方程为y-(π2-2)=2π(x-π),
即y=2πx-π2-2.
(2)由题意得h(x)=ex(cos x-sin x+2x-2)-a(x2+2cos x),
因为h'(x)=ex(cos x-sin x+2x-2)+ex(-sin x-cos x+2)-a(2x-2sin x)
=2ex(x-sin x)-2a(x-sin x)
=2(ex-a)(x-sin x),
令m(x)=x-sin x,则m'(x)=1-cos x≥0,
所以m(x)在R上单调递增.
因为m(0)=0,所以当x>0时,m(x)>0;
当x<0时,m(x)<0.
①当a≤0时,ex-a>0,当x<0时,h'(x)<0,h(x)单调递减,当x>0时,h'(x)>0,h(x)单调递增,
所以当x=0时h(x)取到极小值,极小值是h(0)=-2a-1;