【真题】2017年玉林市崇左市中考数学试卷含答案解析(Word版)
21.(6分)(2017•玉林)已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=0.
(1)求证:对于任意实数t,方程都有实数根;
(2)当t为何值时,方程的两个根互为相反数?请说明理由.
【考点】AB:根与系数的关系;AA:根的判别式..
【分析】(1)根据方程的系数结合根的判别式,可得出△=(t﹣3)2≥0,由此可证出:对于任意实数t,方程都有实数根;
(2)设方程的两根分别为m、n,由方程的两根为相反数结合根与系数的关系,即可得出m+n=t﹣1=0,解之即可得出结论.
【解答】(1)证明:在方程x2﹣(t﹣1)x+t﹣2=0中,△=[﹣(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2≥0,
∴对于任意实数t,方程都有实数根;
(2)解:设方程的两根分别为m、n,
∵方程的两个根互为相反数,
∴m+n=t﹣1=0,
解得:t=1.
∴当t=1时,方程的两个根互为相反数.
【点评】本题考查了根的判别式、相反数以及根与系数的关系,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)根据相反数的定义结合根与系数的关系,找出t﹣1=0.