2017年中考数学《多边形与平面镶嵌》总复习训练含答案解析
一、选择题
1.一个多边形的内角和是900°,则这个多边形的边数是( )
A.6 B.7 C.8 D.9
【考点】多边形内角与外角.
【专题】计算题.
【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.
【解答】解:设这个多边形的边数为n,
则有(n﹣2)180°=900°,
解得:n=7,
∴这个多边形的边数为7.
故选:B.
【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.
2.若一个多边形的内角和为1080°,则这个多边形的边数为( )
A.6 B.7 C.8 D.9
【考点】多边形内角与外角.
【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案.
【解答】解:设这个多边形的边数为n,
根据题意得:180(n﹣2)=1080,
解得:n=8.
故选C.
【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.
3.正十边形的每个外角等于( )
A.18° B.36° C.45° D.60°
【考点】多边形内角与外角.
【专题】常规题型.
【分析】根据正多边形的每一个外角等于多边形的外角和除以边数,计算即可得解.
【解答】解:360°÷10=36°,
所以,正十边形的每个外角等于36°.
故选:B.
【点评】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形三者之间的关系是解题的关键.