8.菱形具有而矩形不具有的性质是( )
A.对角线互相平分 B.四条边都相等
C.对角相等 D.邻角互补
【考点】矩形的性质;菱形的性质.
【专题】证明题.
【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.
【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A不选;
B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;
C、平行四边形对角都相等,故C不选;
D、平行四边形邻角互补,故D不选.
故选:B.
【点评】考查菱形和矩形的基本性质.
9.两条对角线互相垂直平分且相等的四边形是( )
A.矩形 B.菱形 C.正方形 D.都有可能
【考点】多边形.
【分析】如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,理由为:利用对角线互相平分的四边形为平行四边形得到ABCD为平行四边形,再利用对角线互相垂直的平行四边形为菱形,再利用对角线相等的菱形为正方形即可得证.
【解答】解:如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,
已知:四边形ABCD,AC⊥BD,OA=OC,OB=OD,AC=BD,
求证:四边形ABCD为正方形,
证明:∵OA=OC,OB=OD,
∴四边形ABCD为平行四边形,
∵AC⊥BD,
∴平行四边形ABCD为菱形,
∵AC=BD,
∴四边形ABCD为正方形.
故选C.
【点评】此题考查了正方形的判定,以及角平分线定理,熟练掌握正方形的判定方法是解本题的关键.