北京市房山区2015-2016学年八年级下期末数学试卷含答案解析
24.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.设生产A种产品的生产件数为x,A、B两种产品所获总利润为y(元).
(1)试写出y与x之间的函数关系式;
(2)求出自变量x的取值范围;
(3)利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?
【考点】一次函数的应用;一元一次不等式组的应用.
【分析】(1)由于用这两种原料生产A、B两种产品共50件,设生产A种产品x件,那么生产B种产品(50﹣x)件.由A产品每件获利700元,B产品每件获利1200元,根据总利润=700×A种产品数量+1200×B种产品数量即可得到y与x之间的函数关系式;
(2)关系式为:A种产品需要甲种原料数量+B种产品需要甲种原料数量≤360;A种产品需要乙种原料数量+B种产品需要乙种原料数量≤290,把相关数值代入得到不等式组,解不等式组即可得到自变量x的取值范围;
(3)根据(1)中所求的y与x之间的函数关系式,利用一次函数的增减性和(2)得到的取值范围即可求得最大利润.
【解答】解:(1)设生产A种产品x件,则生产B种产品(50﹣x)件,
由题意得:y=700x+1200(50﹣x)=﹣500x+60000,
即y与x之间的函数关系式为y=﹣500x+60000;