首页 | 试卷 | 课件 | 教案 | 素材 | 备课 | 中考 | 高考 | 教师频道 | 会员区 | 手机版



您的位置:数学课件 >>冀教版(初中) >>八年级下 >>第二十一章一次函数 >>21.1-21.5章节课件 >>

2017春冀教版八年级下《第二十一章一次函数》课件+教学案
上传者:   加入日期:17-02-09
2017春冀教版八年级下《第二十一章一次函数》课件+教学案
1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式.
2.会利用待定系数法确定一次函数的表达式.
3.能画出一次函数的图像,根据一次函数的图像和表达式y=kx+b(k≠0)探索并理解k>0和k<0时,图像的变化情况.
4.体会一次函数与二元一次方程的关系.
5.能用一次函数解决简单的实际问题.
6.进一步发展学生的数学抽象能力,强化数学的应用意识.
1.结合具体情境体会和理解一次函数及正比例函数的意义,能根据已知条件运用待定系数法确定一次函数的表达式.
2.逐步学会运用函数的观点观察、分析问题,预测实际问题中的变量的变化规律.
1.通过讨论一次函数与方程(组)的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系.
2.通过本章的学习,要让学生感受数学的价值,培养和提高学生的应用意识.
3.注重对学生情感态度的评价,在学生学习活动中,培养学生自信、自强的性格,记录学生在学习过程中的情感表现以及在解决问题的过程中所表现出来的创新精神.
1.本章的内容、地位和作用.
本章的知识内容主要包括:一次函数,一次函数的图像和性质,用待定系数法确定一次函数表达式,一次函数的应用,一次函数与二元一次方程的关系.这些内容彼此关联,依次递进.一次函数是在学习了一般的函数概念之后,进一步研究的第一类特殊函数,它不仅是现实生活中极为广泛的一类数量关系的抽象模型,有着广泛的应用,而且在整个函数知识的学习中,起着承上启下的重要作用,这主要表现为:第一,通过一次函数的学习,使学生对“函数”这一抽象的核心概念的理解更加深入,对“函数模型”的理解逐步走向深入与深刻、丰满与充实,对“函数”这一系统知识的认识与掌握进一步强化和提升;第二,一次函数的学习,不仅从变量关系类型上为二次函数、反比例函数的学习提供了对照与类比,更从研究方法(如“利用函数图像研究函数的性质”“借助待定系数法求函数表达式”等)上,展示了普遍的意义和作用.
2.本章内容的呈现方式及特点.
(1)一次函数的意义同样是比较抽象的,教科书中采用了这样的研究过程:从小学已认识的“成正比例的量”入手,先引入“正比例函数”,再扩展到“一次函数”.这样编排的目的,一是从学生已有的“数学现实”出发,使新知识的引入比较自然;二是采用“由特殊到一般”的归纳方式,符合学生的认知规律,有利于数学活动经验的积累.
(2)对于学生来说,无论是“正比例函数”还是“一次函数”,其概念认识的形成,都必须借助于相当数量的、他们所熟悉的现实情境,通过归纳、抽象才能实现.因此,教科书特别关注情境的设置与“抽象”过程的有效展开,以促使学生产生有价值的数学思考,完成理性认识的飞跃.
(3)对于一次函数性质的研究,教科书中突出了“数形结合”,即由图像特征引发出函数随自变量变化的增、减性质,因此,图像的绘制与观察,便起着铺垫与引导的重要作用.
(4)教科书紧紧抓住“一点在函数的图像上”与“该点的坐标满足函数的表达式”的对应及一致性,导出用待定系数法求一次函数的表达式,意在突出“形与数”的统一与相互转化,并显示“方程”的广泛应用.随后,又专项研究了一次函数与二元一次方程的关系,更为有力地揭示了函数与方程的关联性.
(5)所有内容的呈现,一是尊重学生的数学现实,二是尽可能展开学生的观察、思考、交流与研究的活动过程,以充分提供学生自主发展的空间.
【重点】
1.理解和掌握一次函数的图像和性质,能用待定系数法确定一次函数的表达式.
2.一次函数的应用,一次函数与二元一次方程的关系.
【难点】
1.一次函数的图像和性质.
2.一次函数的应用.
1.本章之前,刚刚学习了第二十章“函数”,学生对于函数的意义和图像已有了?步的认识,对于相应知识的探究过程及方法,也有了初步的经验积累;另一方面,一次函数源于现实中极为广泛存在的“匀速”变化情境里的数量关系,这样的背景早在此前的许多“算术”应用题和“方程”应用题中以多种“特值”形式反复出现过.这些都是开始本章学习的“数学现实”,教学正是应当从这样的现实出发,用好这样的现实,以优化的过程取得优良效果.
2.正比例函数是“成正比例的量”的一般化和发展,一次函数又是正比例函数的一般化和发展,许多数学知识就是沿着这样的途径扩展与增长出来的,教学中就要引导学生遵循这样的线索去探究,去再发现,构筑良好的知识系统,并借此提高学生的学习能力.
3.一次函数的图像是直角坐标系里的一条直线(不与坐标轴平行),这正是函数对于自变量“匀速”变化的直观(形)反映,事实上,在确定的直角坐标系里,这样的直线与一次函数表达式是“一一对应”的.恰是基于这种对应,图像(直线)的倾斜情况就反映了一次函数对于自变量变化的增减情况(以及增减速度),一次函数的性质就是借此被“形象”地看出来的;另一方面,用待定系数法确定一次函数的表达式,也是以上述“一一对应”为根据的.因此,在教学
中,引导学生通过画图像与研讨,感悟一次函数与其图像的关系便是十分重要的了.
4.一次函数的应用的教学,应当特别关注两个方面,一是怎样将实际问题或数学问题转化为一次函数问题;二是通过广泛应用,进一步体会一次函数“匀速”变化的本质特征.
5.从两个方面引导学生感悟一次函数与二元一次方程的联系,一是直接从表达式的相互转换进行引导,二是从它们对应于确定的直角坐标系里的同一条直线进行引导.由此使学生体会函数与方程的又一种沟通方式.

资料名称: 2017春冀教版八年级下《第二十一章一次函数》课件+教学案
文件大小: 4532K
文件格式: rar
版本年级: 第二十一章一次函数
下载地址:
进入高速下载页 进入本站下载页
本站说明: 下载说明  阅读说明
 相关资料

 新冀教版八年级下第二十一章《一次函数》同步试题含答案 16-02-10(试卷)

 新冀教版八年级下第二十一章《一次函数》达标试题含答案 16-01-02(试卷)


 

 交互区
上传资料 资料求助
 学科分类
小学语文 小学数学 小学英语
小学科学 初中语文 初中数学
初中英语 初中科学 初中物理
初中化学 初中生物 道德法治
初中历史 初中地理 高中语文
高中数学 高中英语 高中物理
高中化学 高中生物 高中政治

[微信公众号]   版权所有@12999教育资源网