2017湖南中考数学挑战压轴题:第一部分函数图象中点的存在性问题
课前导学
我们先回顾两个画图问题:
1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?
2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?
已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.
已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.
在讨论等腰三角形的存在性问题时,一般都要先分类.
如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.
解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.
几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?
如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.