2016年四川省南充市中考数学预测试卷(二)含答案解析
23.广安某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:
|
进价(元/千克) |
售价(元/千克) |
甲种 |
5 |
8 |
乙种 |
9 |
13 |
(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?
(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?
【考点】一次函数的应用;二元一次方程组的应用.
【分析】(1)根据计划购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;
(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.
【解答】解:(1)设购进甲种水果x千克,则购进乙种水果千克,根据题意可得:
5x+9=1000,
解得:x=65,
∴140﹣x=75(千克),
答:购进甲种水果65千克,乙种水果75千克;
(2)由图表可得:甲种水果每千克利润为:3元,乙种水果每千克利润为:4元,
设总利润为W,由题意可得出:W=3x+4=﹣x+560,
故W随x的增大而减小,则x越小W越大,
因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,
∴140﹣x≤3x,
解得:x≥35,
∴当x=35时,W最大=﹣35+560=525(元),
故140﹣35=105(kg).
答:当甲购进35千克,乙种水果105千克时,此时利润最大为525元.