含答案解析
导学探究:
阅读教材P20-21,回答下列问题:
1、探究3中有哪些数量关系?
2、中央是一个与整个封面长宽比例相同的长方形,这个比是多少? 上、下边衬与左、右边衬宽度之比是多少?
3.教科书是根据什么选取未知数的?又是利用怎样的数量关系列出方程的?
4.如果根据正中央的长方形的长、宽比为9,7,设正中央长方形的长、宽,并利用“中央长方形面积=封面面积的四分之三”列方程,间接求上、下边衬与左、右边衬宽可以吗?若可以,你试一试.
归纳梳理
1.列方程解应用题,一般直接设元,即问什么就设什么; 有时为了好理解,也采用间接设未知数的方法,列方程求解.
2.利用一元二次方程分析解决几何图形问题,要抓住图形的特征(如面积关系、图形性质等),在分析题意的基础上建立方程,通过解方程来解决实际问题.
3一元二次方程解决实际问题,要回到实际问题中进行解释和________,看求出的解是否符合__________.
典例探究
【例1】(2016·广西百色)在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.
(1)求这地面矩形的长;
(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?
总结:
解决几何图形问题的关键是掌握常见几何图形的面积、体积公式,并能熟练计算由基本图形构成的组合图形的面积.
对于不规则图形的面积问题,往往通过平移、割补等方法把不规则图形转化为规则图形,运用规则图形的面积公式列出方程.
练1:(2014秋•番禺区校级月考)如图,在宽为20m,长为32m的矩形耕地上,修筑宽度一样的三条道路(如图),把耕地分成大小相等的6块作为试验田,要使试验田面积为504m2,求每条道路的宽度为多少米.