一次函数反映了客观世界的运动与实际的量之间的依赖关系,学好一次函数将为以后学习数学奠定良好的基础。用函数的观点去研究方程等能更进一步地理解初中数学中这些重要的内容。
(二) 课程学习目标
本章内容的设计与编写以下列目标为出发点:
1.以探索简单实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.
2.结合实例,了解常量、变量的意义和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能结合图象数形结合地分析简单的函数关系.
3. 能确定简单实际问题中函数自变量的取值范围,并会求函数值.
4. 结合具体情境体会和理解正比例函数和一次函数的意义,能根据已知条件确定它们的表达式,会画它们的图象,能结合图象讨论这些函数的增减变化,能利用这些函数分析和解决简单实际问题.
5.通过讨论一次函数与二元一次方程等的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程等内容的认识,构建和发展相互联系的知识体系.
6.进行探究性课题学习,以选择方案为问题情境,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分析和解决实际问题的能力.
二、教学重点
6.1 节是全章的基础部分,“变量与函数”结合简单的实际问题,对事物的运动变化进行数量化讨论,先引出常量和变量的意义,再从描述变量之间对应关系的角度刻画了一般函数的基本特征,从而初步建立函数的概念,并给出函数的解析式的意义. 6.2节从实际问题到函数表达式,归纳出一次函数、正比例函数概念,介绍用待定系数求一次函数解析式。
6.3节“函数的图象”在本章之前已有直角坐标系内容的基础上,以具体函数为例,介绍能形象化地表示函数的重要工具——函数的图象,并归纳表示函数的三种方法(解析式法、列表法和图象法),继而研究一次函数的图象和增减变化规律. 一次函数是一种最基本的初等函数,对它的讨论中函数解析式与函数图象的相互联系与转化能发挥重要作用. 这是“数形结合”的思想方法的体现,为今后继续研究各类具体的函数进行必要的准备。 6.4节用一次函数解决问题,经历“问题情境---建立模型---求解验证”的数学活动过程,初步学会从数学的角度发现问题和解决问题,综合运用数学知识解决简单实际问题,增强应用意识,提高实践能力。
6.5节“一次函数与二元一次方程”从一次函数的角度,对一次方程进行再认识,揭示函数与方程等之间的联系,感受数学知识与方法的内在联系,体会“数形结合思想”方法的应用价值。6.6节“一次函数、一元一次方程和一元一次不等式”是全章的拓展提高部分,作为探究性学习的内容,它以“弹簧挂物问题”和“行程问题”两个典型问题的讨论,探求解决实际问题的最优方案,展示函数的应用价值,突出建立数学模型的思想方法和实际意义.
必须指出,函数是数学中极为重要的基本概念,它对数学的发展有重大影响,是数学学习中的重要知识点. 但是由于函数概念涉及运动变化,抽象性较强,所以初学者接受并理解它有一定难度,这也是本章的难点.
“变化与对应”的思想体现在函数概念之中,用运动变化的眼光,以函数为工具,把抽象的数量关系和直观的函数图象结合起来,从“数”与“形”两方面动态地分析问题,从而全面地认识函数,是本章学习的突出特点.