2015年(新)湘教版数学七年级下4.6两条平行线间的距离教案
教学目标:
1.了解公垂线、公垂线段的概念
2.掌握公垂线段定理并会利用定理解决简单问题
3.理解什么是两平行间的距离
重点:公垂线段定理
难点:掌握公垂线段定理并会利用定理解决简单问题
教学步骤
一、快乐启航:
1.点到直线距离。
2.直线外一点与直线上各点连结的所有线段中,垂线段最短。
3.三条直线的平行关系。
二、我会自主学习:
1.做一做:
测量自己的数学课本的宽度。要注意什么问题?刻度尺要与课本两边互相垂直。
2.公垂线、公垂线段的概念与两条平行直线都垂直的直线,叫做这两条平行直线的公垂线。如图形中的直线AB与CD都是公垂线,这时连结两个垂足的线段,叫做这两条平行直线的公垂线段。图中的线段AB和CD。
两平行线的公垂线段也可以看成是两平行直线中一条上的一点到另一条的垂线段。
3.公垂线段定理:两平行线的所有公垂线段都相等。
4.两平行线上各取一点连结而成的所有线段中,公垂线段最短。如图m∥n,直线m、n上各取一点A、B,连结AB。再过A作n线段的垂线段AC,垂足为C,则有AC<AB。从而得到上述定理。
5.两平行间的距离:两平行线的公垂线段的长度。
三、我会合作交流探究::
P105例 如图设直线a、b、c是三条平行直线。已知a与b的距离为5厘米,b与c的距离为2厘米,求a与c的距离。
解:在直线a上任取一点A,过A作AC⊥a,分别交b、c于B、C两点,则AB、BC、AC分别表示a与b,b与c,a与c的公垂线段。
AC=AB+BC=5+2=7,因此a与c的距离为7厘米。
四、我会实践应用:
1:判断题
(1) 水平的地面上有两根电线杆,测量两根电线杆之间的距离,只需测这两根电线杆入地点之间的距离即可。( )
(2) 如图AB∥CD,AD∥BC,AD与BC之间的距离是线段DC的长。( )
(3)如图直线a沿箭头方 向平移1.5cm,得直线b,这两条直线之间的距离是1.5cm。( )
五、我会归纳总结:(本节课的重点内容)
公垂线段定理:
两平行间的距离