江苏省江阴市华士片2013-2014年初三调研考试数学试卷含答案
24.(本题满分8分)如图,港口B位于港口O正西方向120海里处,小岛C位于港口O北偏西60°的方向.一艘科学考察船从港口O出发,沿北偏西30°的OA方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C用1小时装补给物资后,立即按原来的速度给考察船送去.
(1)快艇从港口B到小岛C需要多少时间?
(2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇?
27.(本题满分10分)已知二次函数y=a(x2﹣6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等 (即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等 (即这四条线段能构成平行四边形)?请说明理由.
28.(本题满分10分)我们知道,工艺品的包装需要根据其形状和大小设计包装盒。下面请你设计一个包装盒,如图1所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形(E,F在AB上,是被切去的等腰直角三角形斜边的两个端点),再沿虚线折起,使得A,B,C,D四个点重合于图2中的点P,正好形成一个底为正方形的包装盒,设AE=FB=xcm.
(1)若x=20cm,包装盒底面正方形面积为 _________ cm2;侧面积为 _____cm2
(2)设包装盒侧面积为S,
①求S与x之间的函数关系式;
②若要求包装盒侧面积S最大,问此时x应取何值?并求出最大面积;
(3)试问能否用包装盒盛放一个底面半径为15cm,高为15cm的圆柱形工艺品?若不能,说明理由;若能,求出x的值.