(已知sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, sin15°≈0.26, cos15°≈0.97, tan15°≈0.27.)
24.(本题满分12分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.
(1)求证:四边形ACEF是平行四边形;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论;
(3)四边形ACEF有可能是正方形吗?为什么?
25. (本题满分10分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树200棵,由于同学们的积极参与,实际参加的人数比原计划增加了25%,结果每人比原计划少栽了1棵,问实际有多少人参加了这次植树活动?
26.(本题满分10分)已知:△ 内接于⊙ ,过点 作直线 , 为非直径的弦,且 是⊙ 的切线。
(1)求证: ;
(2)若 , ,连接 并延长交 于点 ,求由弧 、线段 和 所围成的图形的面积.
27.(本题满分12分)某照明有限公司研制出一种新型节能灯,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.
(1)求出月销售量y(万件)与销售单价x(元)之间的函数关系式(不必写出x的取值范围);
(2)求出月销售利润z(万元)与销售单价x(元)之间的函数关系式(不必写出 x的取值范围),并求出销售单价x(元)为多少可获得最大月销售利润。(注:利润=售价-成本价)
(3)请你通过(2)中的函数关系式及其大致图象帮助公司确定产品的销售单价范围,使月销售利润不低于480万元.