18.
如图,在△ABC中,AB=AC= 5,BC=6,P是BC上一点,BP=2,将一个大小与∠B相等的角的顶点放在P 点,然后将这个角绕P点转动,使角的两边始终分别与AB、AC相交,交点为D、E.若△PDE为直角三角形,则BD的长为
▲ .
21.(本题满分8分)如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF.
(1)求证:四边形AFBD是平行四边形;
(2)将下列命题填写完整,并使命题成立(图中不再添加其它的点和线):
①当△ABC满足条件AB=AC时,四边形AFBD是 形;
② 当△ABC满足条件 时,四边形AFBD是正方形.
22.(本题满分8分) 某校有三个年级,各年级的人数分别为七年级600人,八年级540 人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:
(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;
(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例最大,你认为小丽的判断正确吗?说明理由
23.(本题满分8分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字 , 和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y= 上的概率.
24.(本题满分8分)如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米.
(1)求钢缆CD的长度;(精确到0.1米)
(2)若
AD=2米,灯的顶端
E距离
A处1.6米,且∠
EAB=120°,则灯的顶端
E距离地面多少米?
25.(本题满分10分) 、 两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往 城,乙车驶往 城,甲车在行驶过程中速度始终不变.甲车距 城高速公路入口处的距离 (千米)与行驶时间 (时)之间的关系如图.
(1)求y关于x的表达式;
(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,相遇前两车相距的路程为 (千米).请直接写出 关于 的表达式;
(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为 (千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度 .并在右图中画出乙车离开 城高速公路?口处的距离 (千米)与行驶时间 (时)之间的函数图象.