【学习目标】
了解因式分解的意义,理解因式分解与整式乘法的区别和联系,会用提公因式法、公式法(直接用公式不超过两次)进行因式分解.
【课前热身】
1.(2013.岳阳)因式分解:xy-3x=_______.
2.(2013.盐城)因式分解:a2-9=_______.
3.(2013.南充)因式分解:x2-4(x-1)=_______.
4.一个长方形的面积是(x2-9)m2,其长为(x+3)m,用含有x的整式表示它的宽为_______m.
5.(2013.茂名)下列各式由左边到右边的变形属于因式分解的是 ( )
A.a(x+y)=ax+ay B.x2-4x+4=x(x-4)+4
C.10x2-5x=5x(2x-1) D.x2-16+6x=(x+4)(x-4)+6x
6.(2013.张家界)下列各式能用完全平方公式进行因式分解的是 ( )
A.x2+x+1 B.x2+2x-1 C.x2-1 D.x2-6x+9
7.把下列各式分解因式:
(1)(x2+y2)2-4x2y2; (2)(x-2)(x+4)+x2-4.
【课堂互动】
知识点1 因式分解
例1 (2013.河北)下列等式从左到右的变形属于因式分解的是 ( )
A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1
C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)
例2 (1)(2013-黔西南州)因式分解:2x4-2=_______.
(2)(2013.北京)因式分解:ab2-4ab+4a=_______.
跟踪训练
1.(2013.临沂)因式分解:4x-x3=_______.
2.(2013.贵港)因式分解:3x2-18x+27=_______.
3.把下列各式分解因式:
(1)(a2+4)2-16a2; (2)8(x2-2y2)-x(7x+y)+xy.
知识点2 求代数式的值
例1 (2013.枣庄)若a2-b2= ,a-b= ,则a+b=_______.
例2 (2013.大庆)已知ab=-3,a+b=2,求代数式a3b+ab3的值.
跟踪训练
1.若a+b=2,则a2-b2+4b的值是 ( )
A.2 B.3 C.4 D.6
2.甲、乙两名同学在将x2+ax+b因式分解时,甲看错了b,分解的结果为(x+2)(x+4);乙看错了a,分解的结果为(x+1)(x+9).请你分析一下a,b的值分别是多少,并写出正确的因式分解过程.
知识点3 图形面积与因式分解
例 如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a,b的恒等式为 ( )
A.(a-b)2=a2-2ab+b2
B.(a-b)2=a2+2ab+b2
C.a2-b2=(a-b)(a+b)
D.a2+ab=a(a+b)
跟踪训练
1.在边长为a的正方形中挖去一个边长为b的小?方形(a>b)(图1),把余下的部分拼成一个矩形(图2),根据两个图形中阴影部分的面积相等,可以验证 ( )
A.(a+b)2=a2+2ab+b2 B.(a-b)2=a2-2ab+b2
C.a2-b2=(a+b)(a-b) D.(a+2b)(a-b)=a2+ab-2b2