教学目标
1.巩固位似图形及其有关概念.
2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.
3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.
重点、难点
1.重点:用图形的坐标的变化来表示图形的位似变换.
2.难点:把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.
一、创设情境
活动1 教师活动:提出问题:(教材P48-49页探究:)
(1)如图27.3-3(1),在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为 ,把线段AB缩小.观察对应点之间坐标的变化,你有什么发现?
图27.3-3
(2)如图27.3-3(2),△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?
学生活动: 学生小组讨论,共同交流,回答结果.
教师活动:分析:略(见教材P49的分析)
解:略(见教材P49的解答)
【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
二、应用例题(教材P49-50页 例)
活动2
例(教材P49的例题)
分析:略(见教材P49的例题分析)
解:略(见教材P50的例题解答)
问:你还可以得到其他图形吗?请你自己试一试!
三、课堂练习
活动3 教材P50页.习题1、2
四、在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.
活动4
1.如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将△ABC向左平移三个单位得到△A1B1C1,写出A1、B1、C1三点的坐标;
(2)写出△ABC关于x轴对称的△A2B2C2三个顶点A2、B2、C2的坐标;
(3)将△ABC绕点O旋转180°得到△A3B3C3,写出A3、B3、C3三点的坐标.