20.3 菱形的判定
一、知识与技能
1.能说出菱形的两个判定定理,并会用它进行相关的论证和计算.
2.会根据已知条件画出菱形.
二、过程与方法
1.经历探究菱形判定条件的过程,通过操作、观察、猜想、证明的过程,培养学生的科学探索精神.
2.探索并掌握菱形的判定方法.
3.利用菱形的判定方法进行合理的论证和计算.
1.让学生在探究过程中加深对菱形的理解,养成主动探索的学习习惯.
2.通过菱形与矩形判定方法的类比,进一步体会类比的思想方法的作用.
教学重点 菱形的判定方法.
教学难点 探究菱形的判定条件并合理利用它进行论证和计算.
教具准备 多媒体课件.把中点固定在一起的两根细木条.
教学过程
一、创设问题情境,引入新课
想一想:菱形和矩形分别比平行四边形多了哪些性质?怎样判定一个四边形是矩形?
(让学生回忆并说出菱形和矩形各自的性质,教师用对比的形式播放课件)
|
矩 形 |
菱 形 |
性
质 |
1.四个角都是直角 |
1.四条边都相等 |
2.对角线相等 |
2.对角线互相垂直
且平分一组对角 |
判
定 |
1. 有一个角是直角
的平行四边形 |
|
2.三个角是直角的
四边形 |
|
3. 角线相等的平
行四边形 |
|
师:看看上表,大家可以猜到,我们就研究如何判定一个四边形是菱形的问题.
二、探究菱形的判定条件
生:可以用菱形的定义判定.也就是说:有一组邻边相等的平行四边形是菱形.
师:很好.大家再用类比的方法想一想,受矩形判定条件的启发,你对菱形的判定条件有什么猜想.
生甲:矩形定义是平行四边形基础上限制角,于是有“三个角是直角的四边形是矩形”;菱形的定义是平行四边形基础上限制边,是不是可以得到:“四条边都相等的四边形是菱形”呢?
生乙:矩形的对角线相
等,于是有对角线相等的平行四边形是矩形;菱形的对角线互相垂直,是不是可以猜想:对角线互相垂直的平行四边形是菱形.
师:猜得有理.下面请大家做一做,看有什么新发现.
操作要求:
用一长一短的两根细木条,在它们的中点处固定一个小钉;做成一个可转动的十字,四周围上一根橡皮筋(如图(1)),做成一个四边形,转动木条,这个四边形什么时候变成菱形?