达朗贝尔(Jean Le Rond d'Alembert,1717-1783)——法国著名的物理学家、数学家和天文学家,一生研究了大量课题,完成了涉及多个科学领域的论文和专著,其中最著名的有8卷巨著《数学手册》、力学专著《动力学》、23卷的《文集》、《百科全书》的序言等等。他的很多研究成果记载于《宇宙体系的几个要点研究》中。达朗贝尔生前为人类的进步与文明做出了巨大的贡献,也得到了许多荣誉。但在他临终时,却因教会的阻挠没有举行任何形式的葬礼。
达朗贝尔少年时被父亲送到了一所教会学校,在那里他学习了很多数理知识,为他将来的科学研究打下了坚实的基础。难能可贵的是,在宗教学校里受到了许多神学思想的熏陶以后,达朗贝尔仍然坚信真理、一生探求科学的真谛、不盲从于宗教的认识论。后来他自学了一些科学家的著作,并且完成了一些学术论文。1741年,凭借自己的努力,达朗贝尔进入了法国科学院担任天文学助理院士,在以后的两年里,他对力学作了大量研究,并发表了多篇论文和多部著作。1746年,达朗贝尔被提升为数学副院士。1750年以后,他停止了自己的科学研究,投身到了具有里程碑性质的法国启蒙运动中去。他参与了百科全书的编辑和出版,是法国百科全书派的主要首领。在百科全书的序言中,达朗贝尔表达了自己坚持唯物主义观点、正确分析科学问题的思想。在这一段时间之内,达朗贝尔还在心理学、哲学、音乐、法学和宗教文学等方面都发表了一些作品。
1760年以后,达朗贝尔继续进行他的科学研究。随着研究成果的不断涌现,达朗贝尔的声誉也不断提高。他尤其以写论文快速而闻名。1762年,俄国沙皇邀请达朗贝尔担任太子监护,但被他谢绝了;1764年,普鲁士国王邀请他到王宫住了三个月,并邀请他担任普鲁士科学院院长,也被他谢绝了。1754年,他被提升为法国科学院的终身秘书。欧洲很多国家的科学院都聘请他担任国外院士。
数学是达朗贝尔研究的主要课题,他是数学分析的主要开拓者。达朗贝尔为极限作了较好的定义,但他没有把这种表达公式化。波义尔做出这样的评价:达朗贝尔没有逃脱传统的几何方法的影响,不可能把极限用严格形式阐述;但他是当时几乎唯一一位把微分看成是函数极限的数学家。
达朗贝尔是十八世纪少数几个把收敛级数和发散级数分开的数学家之一,并且他还提出了一种判别级数绝对收敛的方法--达朗贝尔判别法,即现在还使用的比值判别法;他同时是三角级数理论的奠基人。达朗贝尔也为偏微分方程的出现做出了巨大的贡献。1746年他发表了论文《张紧的弦振动是形成的曲线研究》,在这篇论文里,他首先提出了波动方程,并于1750年证明了它们的函数关系。1763年,他进一步讨论了不均匀弦的振动,提出广义的波动方程。
另外,达朗贝尔在复数的性质、概率论等方面都有所研究,而且他还很早就证明了代数的基本定理。达朗贝尔在数学领域的各个方面都有所建树,但他并没有严密和系统的进行深入的研究,他甚至曾相信数学知识快穷尽了。但无论如何十九世纪数学的迅速发展是建立在他们那一代科学家的研究基础之上的,达朗贝尔为推动数学的发展做出了重要的贡献。
达朗贝尔认为力学应该是数学家的主要兴趣,所以他一生对力学也作了大量研究。达朗贝尔是十八世纪为牛顿力学体系的建立作出卓越贡献的科学家之一。《动力学》是达朗贝尔最伟大的物理学著作。在这部书里,他提出了三大运动定律,第一运动定律是给出几何证明的惯性定律;第二定律是力的分析的平行四边形法则的数学证明;第三定律是用动量守恒来表示的平衡定律。书中还提出了达朗贝尔原理,它与牛顿第二定律相似,但它的发展在于可以把动力学问题转化为静力学问题处理,还可以用平面静力的方法分析刚体的平面运动,这一原理使一些力学问题的分析简单化,而且为分析力学的创立打下了基础。